Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein & Cell ; (12): 17-27, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971604

RESUMO

The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.


Assuntos
Humanos , Antivirais/química , COVID-19 , Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-363812

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 that urgently needs an effective treatment. Nucleoside analog drugs including favipiravir have been repurposed for COVID-19 despite of unclear mechanism of their inhibition of the viral RNA polymerase (RdRp). Here we report the cryo-EM structures of the viral RdRp in complex with favipiravir and two other nucleoside inhibitor drugs ribavirin and penciclovir. Ribavirin and the ribosylated form of favipiravir share a similar ribose scaffold that is distinct from penciclovir. However, the structures reveal that all three inhibitors are covalently linked to the primer strand in a monophosphate form despite the different chemical scaffolds between favipiravir and penciclovir. Surprisingly, the base moieties of these inhibitors can form mismatched pairs with the template strand. Moreover, in view of the clinical disadvantages of remdesivir mainly associated with its prodrug form, we designed several orally-available remdesivir parent nucleoside derivatives, including VV16 that showed 5-fold more potent than remdesivir in inhibition of viral replication. Together, these results demonstrate an unexpected promiscuity of the viral RNA polymerase and provide a basis for repurpose and design of nucleotide analog drugs for COVID-19. One Sentence SummaryCryo-EM structures of the RNA polymerase of SARS-CoV-2 reveals the basis for repurposing of old nucleotide drugs to treat COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-328336

RESUMO

The COVID-19 pandemic by non-stop infections of SARS-CoV-2 has continued to ravage many countries worldwide. Here we report the discovery of suramin, a 100-year-old drug, as a potent inhibitor of the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) through blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for COVID-19. The 2.6 [A] cryo-EM structure of the viral RdRp bound to suramin reveals two binding sites of suramin, with one site directly blocking the binding of the RNA template strand and the other site clash with the RNA primer strand near the RdRp catalytic active site, therefore inhibiting the viral RNA replication. Furthermore, suramin potently inhibits SARS-CoV-2 duplication in Vero E6 cells. These results provide a structural mechanism for the first non-nucleotide inhibitor of the SARS-CoV-2 RdRp and a rationale for repurposing suramin for treating COVID-19. One Sentence SummaryDiscovery and mechanism of suramin as potent SARS-CoV-2 RNA polymerase inhibitor and its repurposing for treating COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...